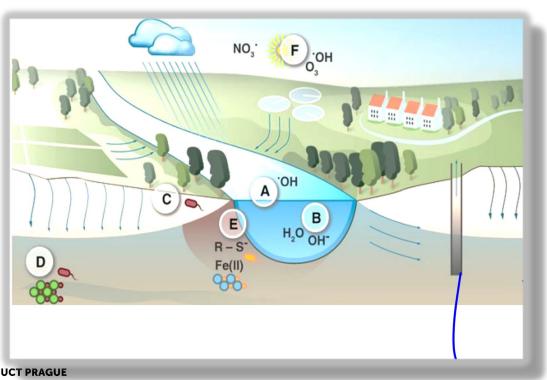


Delivering an Effective, Resilient and Sustainable EU-China Food Safety Partnership

'Organic' versus 'conventionl' – a novel strategy to identify fraudulent labelling

Jana Hajslova, Leos Uttl, Dana Schusterova, Michal Stupak,
Monika Tomaniova


Talk overview

- Pesticide metabolites and transformation products
- Pesticide metabolites as markers of illegal practices on organic crops?
- Occurrence of pesticide metabolites in conventional fruits
- Current analytical approaches in pesticide metabolites analysis
- Food smart phone screening challenge

What are pesticide metabolites and other transformation products of concern?

- **▶ LEGALY RELEVANT, with a remaining pesticide activity**
- yet LEGALLY NON-RELEVANT, without well characterized pesticide activity and any toxicity

Sunlit surface water

e.g., direct phototransformation

Bulk water body

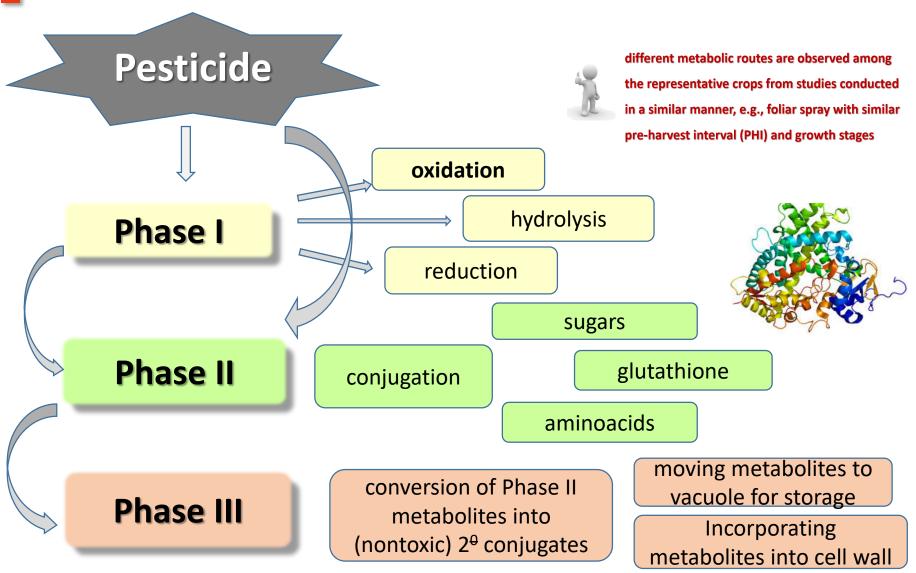
e.g., hydrolysis

Vadose zone

e.g., microbial transformation

D Groundwater, oxic

e.g., biotic or abiotic transformation

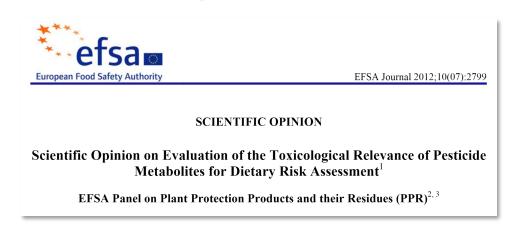

Groundwater, anoxic

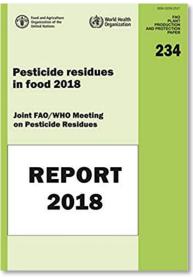
e.g., reductive transformation

Troposphere

e.g., indirect phototransformation

Biotransformation of pesticides in plants




Why and how are pesticide metabolites / transformation products studied?

- Metabolism experiments: identification and quantification by methods based on the use of labelled compounds, recently other sophisticated methods
- Crop field trials: may also be useful for selecting residue definitions by providing information on the relative and absolute amounts of parent pesticide and metabolites.
- A pesticide residue is the combination of the pesticide and its metabolites, degradates, and other transformation products.

Toxicological relevance of metabolites and degradates of pesticide active substances in dietary risk assessment

- → the threshold of toxicological concern (TTC) concept as an appropriate screening tool
- critical steps identified in the application of a TTC scheme:
- 1) the estimate of the level of the metabolite,
- 2) the evaluation of genotoxicity alerts
- the detection of neurotoxic metabolites.

Residue definitions (Regulation EC 396/2005)

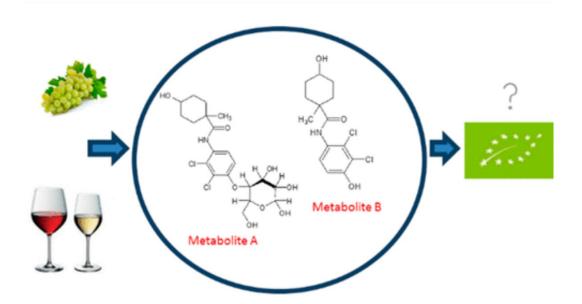
The residue definition for dietary risk assessment should include compounds of toxicological significance

Residue definitions (Regulation EC 396/2005)

Residue	defined as the sum of:
amitraz	amitraz including the metabolites containing the 2,4 -dimethylaniline moiety expressed as amitraz
aldicarb	aldicarb, its sulfoxide and its sulfone, expressed as aldicarb
carbendazim	benomyl and carbendazim expressed as carbendazim
and benomyl	
carbofuran	carbofuran (including any carbofuran generated from carbosulfan, benfuracarb or furathiocarb) and 3-OH carbofuran expressed as carbofuran
daminozide	daminozide and 1,1-dimethyl-hydrazine (UDHM), expressed as daminozide
dazomet	methylisothiocyanate resulting from the use of dazomet and metam
disulfoton	disulfoton, disulfoton sulfoxide and disulfoton sulfone expressed as disulfoton
ethofumasate	ethofumesate, 2-keto–ethofumesate, open-ring-2-keto-ethofumesate and its conjugate, expressed as ethofumesate
fenamiphos	fenamiphos and its sulphoxide and sulphone expressed as fenamiphos
fluroxypyr	fluroxypyr, its salts, its esters, and its conjugates, expressed as fluroxypyr
folpet	folpet and phtalimide, expressed as folpet
fosethyl-Al	fosetyl, phosphonic acid and their salts, expressed as fosetyl
haloxyfop	haloxyfop, haloxyfop-ethoxyethyl and haloxyfop-methyl expressed as haloxyfop
oxydemeton- methyl	oxydemeton-methyl and demeton-S-methylsulfone expressed as oxydemeton-methyl
quintozene	quintozene and pentachloro-aniline expressed as quintozene
tolylfluanid	tolylfluanid and dimethylaminosulfotoluidide (DMST) expressed as tolylfluanid

What about those 'legally non-relevant' metabolites?

Award: article of the month



2019, 67, 22m 6102 - 6115

Can Occurrence of Pesticide Metabolites Detected in Crops Provide the Evidence on Illegal Practices in Organic Farming?

Schusterova D, Suchanova M, Pulkrabova J, Koourek V, Hajslova J

How is 'organic food' defined?

'food originated from organic production'

Note: that only production process and conditions are defined – not the product features (parameters)

REGULATION (EC) No 834/2007 on organic production and labelling of organic products:

"Organic production is a <u>system of farm management and food production</u> that combines best environmental practices,... and a production method in line with the preference of certain consumers for products produced <u>using natural</u> substances and processes."

Legislation on organic production

REGULATION (EC) No 889/2008 laying down rules for the implementation of Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control.

Rules on production, preservation, processing, packaging, transport and storage of organic products

Restrictions on:

- fertilizers, soil conditioners and nutrients,
- PESTICIDES*,
- feed materials, feed additives used in animal nutrition
- products for cleaning and disinfection,
- products and substances for use in production of processed organic food (food additives),
- processing aids

ANNEX II: 'Pesticides' permitted in organic farming

"Where plants cannot be adequately protected from pests and diseases by measures provided for in Article 12 of Regulation 834/2007/EC, only products referred to in Annex II may be used in organic production. Operators shall keep documentary evidence of the need to use the product."

ANNEX II: 'Pesticides' permitted in organic farming

Name	Description, compositional requirement, conditions for use
Azadirachtin extracted from Azadirachta indica (Neem tree)	
Plant oils	All uses authorised, except herbicide.
Pyrethrins extracted from Chrysan- themum cinerariaefolium	
Pyrethroids (only deltamethrin or lambdacyhalothrin)	Only in traps with specific attractants; only against Bactrocera oleae and Ceratitis capitata Wied.
Quassia extracted from Quassia amara	Only as insecticide, repellent.
Repellents by smell of animal or plant origin/sheep fat	Only on non-edible parts of the crop and where crop material is not ingested by sheep or goats.
Micro-organisms	Not from GMO origin.
Spinosad	

Let's introduce the background of the authentication study in a more detail

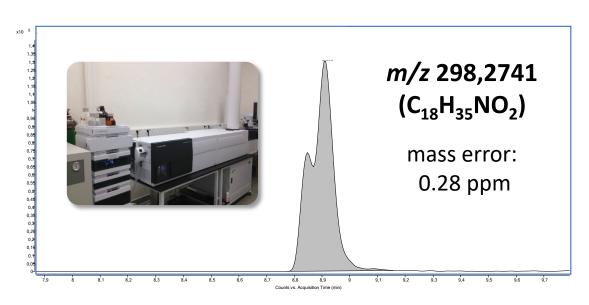
Challenge: bio-wines authentication

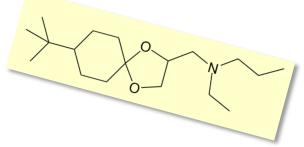
biowinesLim assool 23.-

Bacgreound of study:

Growing popularity of 'bio-wines' has raise a demand for commercial community of organic farming practices usewd in grapes production (Commission Regulation 889/2008).

PROBLEM: occurrence of unauthorized pesticide residues close to 0.01 mg/kg in 'organic' grapes found by Control Authority, however, how to interpret it?


Accidental contamination e.g. through atmospheric transport


or

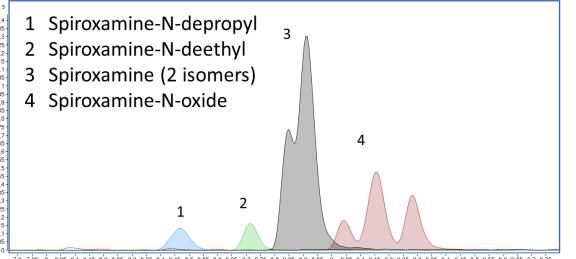
Illegal use of pesticide preparations

Example of difficult decision: is the wine organic?

Spiroxamine – 0.01 mg/kg

→ "BIO" MLR

1st step √


Spiroxamine + metabolites 11.105.

→ this does not comply 0.85.
with "BIO" MLR 0.65.

2nd step

Case study:

Monitoring of pesticide residues and their metabolites across a wine production chain

Field experiments (2016 – 2018)

Leaves and grapes sampled by Central Institue for Agriculture Testing, Brno

Moravia vineyards

A. Organic vineyard– certified

ÚKZÚZ

B. Conventional vineyard

Fungicides used for treatment →

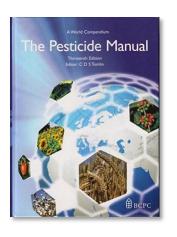
Dimethomorph
Fenhexamid
Iprovalicarb
Pyraclostrobin
Quinoxyfen
Spiroxamine
Tebuconazole
Triadimenol
Trifloxystrobin

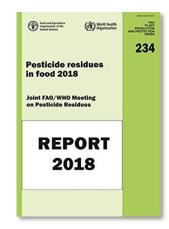
Folpet
Fosetyl-Al
Iprodion
Mancozeb
Metiram

Persistence of fungicides used for protection of *Vinis vinifera* plants (grapes)

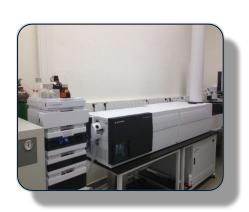
	LOQ	Rheinischer Riesling				
Pesticide	mg/kg	C _{starting} (mg/kg)	C _{final} (mg/kg)	% decrease		
Fenhexamid	0,002	0,802	0,192	76		
Spiroxamine	0,001	0,048	0,024	50		
Difenoconazole	0,001	0,017	0,009	47		
Pyrimethanil	0,001	0,189	0,107	43		
Iprovalicarb	0,001	0,015	0,011	27		
Fluopicolide	0,001	0,210	0,172	18		
Pyraclostrobin	0,001	0,006	0,005	17		
Dimethomorph	0,001	0,088	0,083	6		
Meptyldinocap	0,005	<0,005	<0,005	_		

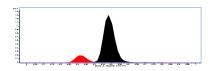
		Cabernet Sauvignon				
Pesticide	LOQ mg/kg	C _{starting} (mg/kg)	C _{final} (mg/kg)	9 weeks <u>%</u> decrease		
Fenhexamid	0,002	0,227	0,017	93		
Spiroxamine	0,001	0,981	0,091	91		
Difenoconazole	0,001	0,028	0,007	75		
Pyrimethanil	0,001	0,249	0,078	69		
Iprovalicarb	0,001	0,341	0,126	63		
Fluopicolide	0,001	0,045	0,017	62		
Pyraclostrobin	0,001	0,043	0,018	58		
Dimethomorph	0,001	0,009	0,005	44		
Meptyldinocap	0,005	<0,005	<0,005	_		




Sources employed for Database of pesticide metabolites construction

JMPR documents, EFSA opinions, Pesticide manual, scientific literature...

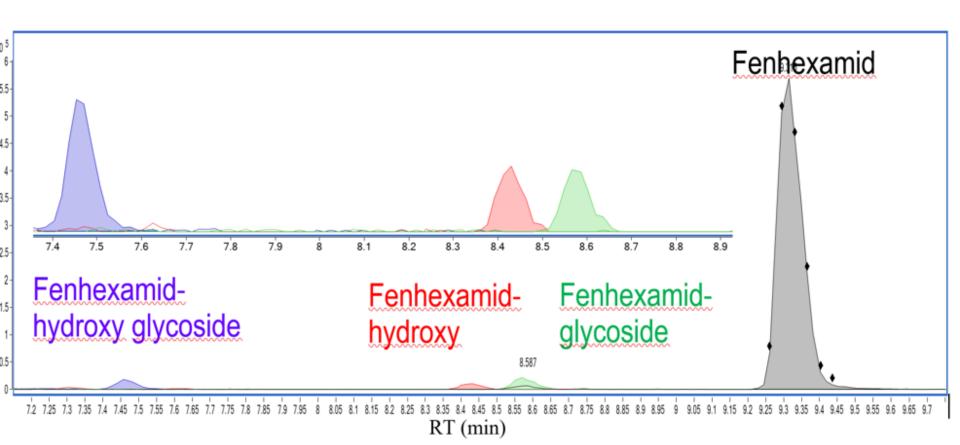




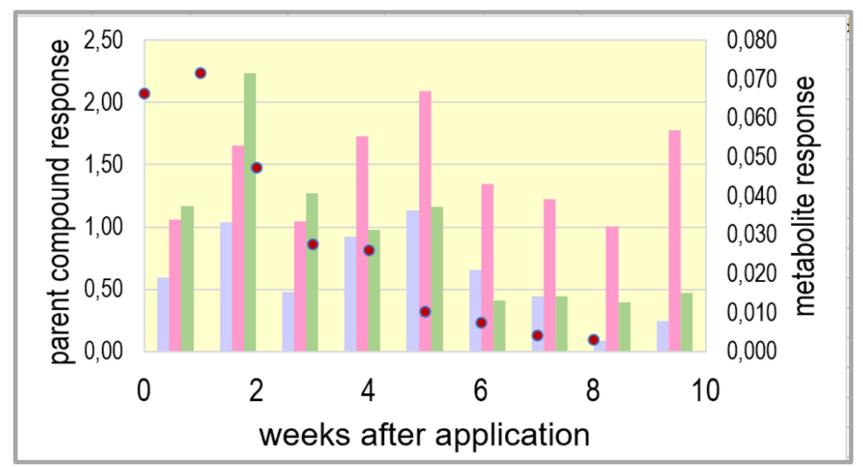
HRMS/MS screening and confirmation

Accurate mass (± 5 ppm), isotope profile Interpretation of MS/MS fragments

- Diagnostic fragments
- Fragments complying to parent molecule
- Fragments characterizing metabolic transformation
- Neutral losses



Search for fenhexamid and its metabolites – an example of one of database items


Pesticide - parent compound	Structure, elemental formula, accurate mass (Da)	Metabolites	Elemental formula	Accurate mass (Da)
	OF HAND OF THE PROPERTY OF THE	Fenhexamid- glykoside	C ₂₀ H ₂₇ Cl ₂ NO ₇	463,1165
Fenhexamid		Fenhexamid- hydroxy	C ₁₄ H ₁₇ Cl ₂ NO ₃	317,0585
rennexamiq		Fenhexamid- hydroxy glykoside	C ₂₀ H ₂₇ Cl ₂ NO ₈	479,1114
	301,0636	Difenhexamid	C ₂₈ H ₃₂ Cl ₄ N ₂ O ₄	600,1116

Search for fenhexamid and its metabolites – an example of one of database items

Search for fenhexamid and its metabolites - an example of one of database items

- Fenhexamid-hydroxy
 - Fenhexamid-glykosid
- Fenhexamid-hydroxy glycoside
- Fenhexamid

Number of metabolites detected across wine production chain

	METABOITE		MATRIX					
PESTICIDE			lea ves		gra pes		/i e	
		RR	c s	RR	ပ	R R	ပ က	
Difenoconazole	► Difenoconazole CGA 205374	>	✓	>	>	×	×	
Dimethomorph	► Dimethomorph hydroxy	√	✓	×	×	×	×	
	► Dimethomorph- demethyl	>	✓	>	✓	>	>	
	▶ Dimethomorph- demethyl glycoside	×	×	>	✓	×	×	
	▶ Fenhexamid- hydroxy	\	✓	>	✓	✓	<	
Fenhexamid	▶ Fenhexamid- hydroxy glycoside.	>	✓	>	\	>	×	
	▶ Fenhexamid- glykosid	×	×	×	>	×	×	
Fluopicolide	▶ Fluopicolide hydroxy	>	✓	×	✓	×	×	
lprovalicarb.	▶ Iprovalicarb- hydroxy	√	✓	✓	✓	×	✓	
	 Iprovalicarb- hydroxy glycoside 	✓	✓	\	✓	\	✓	

	METABOITE		MATRIX						
PESTICIDE			lea ves		gra pes		wi ne		
		R R	c s		c s		c s		
	▶ Pyraclostrobin- desmethoxy	✓	✓	✓	✓	×	×		
Pyraclostrobin	► Pyraclostrobin- hydroxy	✓	✓	×	✓	×	×		
	► Pyraclostrobin- hydroxy glycoside	✓	×	×	×	×	×		
	► Pyrimethanil hydroxy	✓	✓	×	✓	✓	✓		
Pyrimethanil	► Pyrimethanil- hydroxy glycoside	✓	✓	×	✓	×	×		
~ 3 0000 0 505000	► Pyrimethanil- metabolit A	×	√	>	✓	>	<		
	► Pyrimethanil- metabolit B	×	✓	>	✓	>	>		
	▶ Spiroxamine-N- desethyl	√	✓	√	✓	✓	✓		
Spiroxamine	▶ Spiroxamine-N- despropyl	√	✓	\	✓	✓	✓		
	▶ Spiroxamine-N- oxid	✓	✓	✓	✓	×	×		

And what about the bio-wines at the current market?

Monitoring of bio-wines at EU market

Samples analyzed for the presence of pesticides and their metabolites:

- 28 white bio-wines
- 29 red bio-wines

No pesticide residues / their metabolites detected in 72 % bio wines

- 19% of samples contained detcetable pesticide residues together with some of their metabolites
- 7% of samples contained more tha one pesticide (parent compound)
- 4% of samples contained only detectable pesticide metabolites
- 1% of samples contaned pesticide residues not registered in EU

The most frequently detected pesticides: fluopyramu, myclobutanilu a tebufenozidu and relevant metabolites:

fluopyram-hydroxy myclobutanil-hydroxy tebufenozide-hydrox

Monitoring study on the occurrence of pesticide metabolites in various (conventional) crops might be interesting...

Pesticide metabolites in fruit - a survey

(35 samples per each commodity)

Grapes and wine:

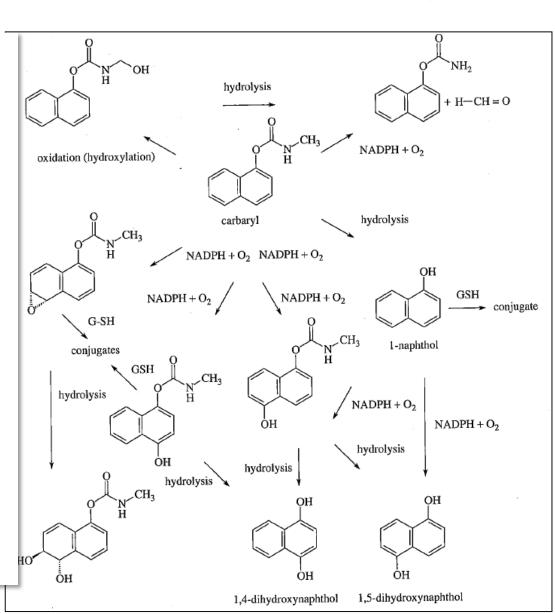
 37 pesticide residues detected, 98 metabolites searched → 32 metabolites detected and identified (relevant to 18 pesticides)

Apples:

 45 pesticide residues detected, 114 metabolites searched → 29 metabolites detected and identified (relevant to 26 pesticides)

Citrus fruit:

 13 pesticide residiues detected, 30 metabolites searched → 8 metabolites detected and identified (relevant to 5 pesticides)



PESTICIDE METABOLITES: analytical strategies

Challenges in pesticide metabolites analysis

- Number of metabolites originates from parent pesticide → very low conc.
- Most of them are fairly more polar compared to parent compound
- ▶ The dynamics of individual metabolites origination is not known
- Analytical standards are not available

Current state-of-the-art in pesticide metabolites LC-MS analysis

26 pesticides

47 metabolites

positive detection

matching

pesticide metabolite library

Metabolites and parent compounds analysed in a separate runs (LC-MSPMS and LC-HRMS)

METABOLITES

(648 compounds):

Extraction performed by MeOH – water (50:50, v/v)

Clean-up by SPE and passing the sample through the syringe filter

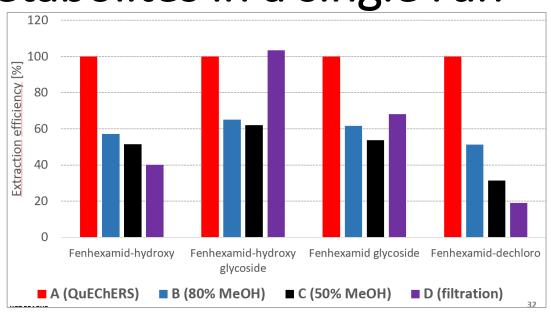
Time consuming and rather labour intensive procedure

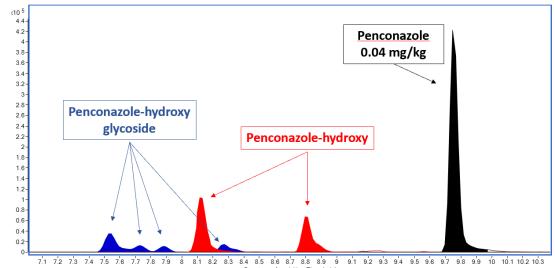
500 analyzed samples contaminated food (commercial fruits and vegetables) raw data MSE pesticide targeted screening (routine analysis) 3D detection and clustering 96 positive samples (m/z, isotope, charge, intensity) non-targeted pesticide metabolite list (based on detected pesticides) suspect component list contaminated food re-analysis positiv detection matching suspect screening with LC-QTof MS > retention time > mass accuracy

Food Analytical Methods (2018) 11:1591–1607 https://doi.org/10.1007/s12161-017-1143-4

> isotope fit

> fragment ions


Development of a Suspect Screening Strategy for Pesticide Metabolites in Fruit and Vegetables by UPLC-Q-Tof-MS


Is it possible to involve multiple pesticide metabolites into current multiresidue method?

Multi-analyte approach, parent pesticides and their metabolites in a single run

QuEChERS extraction provided most intensive signals (less matrix effects?)

Penconazole in grapes (m/z 284.0721), penconazole-hydroxy (m/z 300.0665), penconazole-hydroxy glycoside (m/z 462.1176)

CONCLUSIONS

- Detection of fraud (illegal treatment of crop by pesticides) is possible based on pesticide metabolites screening, standards are needed for quantification
 - However, intensive research of pesticide metabolism is needed to identify reliable markers for particular crop
- → Most of metabolites (pesticide treatment markers) might be incorporated into current multi-residue methods
- → Possible interference of dietary pesticide metabolites with biomonitoring studies should be assessed (risk of exposure overestimation)

